Übersichtskatalog

Zahnradpumpen	2	Verrohrungsventile, Einschraubventile	18
Axialkolbenpumpen verstellbar	3	Proportionalventile	19
Axialkolbenpumpen konstant	4	Elektronik	20
Flügelzellenpumpen	5,6	Cartridgeventile	21
Zahnradmotore	7	Messtechnik	22
Torqmotore	8,9	Ladebordwandaggregate	23
Axialkolbenmotore	10	Filter	24
Radialkolbenmotore	11	Entwässerungsaggregate	25
Metrische Zugstangenzylinder	12	Wärmetauscher	26
Zöllige Zugstangenzylinder	13,14	Verbindungselemente, Schläuche	27
Metrische Rundzylinder	15	Instandsetzung, Reparaturen, Anlagenoptimierung	28
Zylinder mit Wegmesssystem	16	Aggregatebau	29
Wege-, Zwischenplattenplattenventile	17	Firmenfotos	30
		Premium Marken	31

Zahnradpumpen

KOHYD

- Hoher Wirkungsgrad
- Einfach- und Mehrfachpumpen
- Dauerdruck bis max. 280 bar
- International gängige Abmessungen
- Reversierbare Ausführungen lieferbar

							Quelle:	Par
021	0025	0033	0036	0043	0048	0058	0062	0

Parker, Typ PGP502	8000	0012	0016	0021	0025	0033	0036	0043	0048	0058	0062	0079
Fördermenge (cm³/U)	0,8	1,2	1,6	2,1	2,5	3,3	3,6	4,3	4,8	5,8	6,2	7,9
Max. Nenndruck (bar)	280	280	280	280	280	280	260	250	230	200	180	160
Max. Drehzahl (min-1)	5000	5000	5000	4500	4500	4000	4000	4000	3800	3800	3500	3000
Typ PGP511	0040	0060	0080	0100	0110	0140	0160	0190	0230	0270	0310	0330
_				0100	· · · ·	· · · · ·						
Fördermenge (cm³/U)	4,0	6,0	8,0	10,0	11,0	14,0	16,0	19,0	23,0	27,0	31,0	33,0
Max. Nenndruck (bar)	250	250	250	250	250	250	250	250	210	180	160	150
Max. Drehzahl (min-1)	3500	3500	3500	3500	3500	2700	3500	3200	2700	2300	2000	1800
			,									
Typ PGP517	0140	0160	0190	023	0 02!	50 02	280 0	330 (0380	0440	0520	0700
Fördermenge (cm ³ /U)	14,0	16,0	19,0) 23,	0 25	5,0 2	8,0 3	33,0	38,0	44,0	52,0	70,0
Max. Nenndruck (bar)	250	250	250	25	0 25	50 2	250	250	250	225	190	165
Max. Drehzahl (min-1)	3000	3400	3300	330	0 310	00 31	00 30	000	3000	2800	2700	2300

Marzocchi Zahnradpumpen & Motoren Übersicht

Mikropumpen, Baugruppe 0.25 und 05
Zahnradpumpen für Kompaktaggregate, Baugruppe 1P
Standardpumpen Aluminium, Baugruppe ALP
Hochdruck-Zahnradpumpen, Baugruppe GHP
Standardmotoren, Baugruppe ALM
Hochdruckzahnradmotoren, Baugruppe GHM
Mehrfachpumpen, Baugruppe ALP und GHP
Leiselaufpumpen, ELIKA

ELIKA Doppelpumpen

Mehrfachpumpen, kurze Bauform, Baugruppe ALPC und GHPC

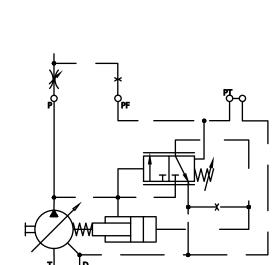
Hochdruck- Niederdruckkombinationen, Baugruppe HL

Vorsatzlager, T-System

Pumpen und Motoren mit Ventilen, VM und VN

Pumpen mit eingebauter Load-Sensing Steuerung

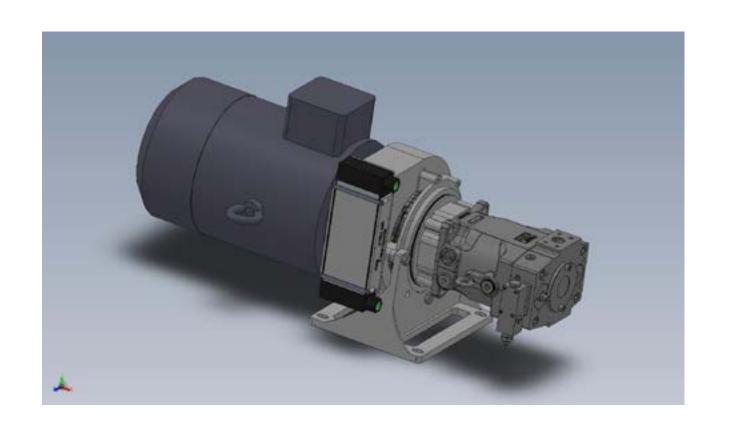
Anti-Kavitationsblock und elektrisch proportionalen Druckbegrenzungsventil, VE


Axialkolbenpumpen mit verstellbarer Fördermenge

- Modulare Regelkonzepte
- Große Servokolben für schnelles Regelverhalten
- Durchgehende Antriebswelle für 100 % Drehmoment bei Anbaupumpen
- Reduzierte Durchfluss- und Druckschwankungen
- Wartungsfreundlich

Typ PV	016	020	023	028	032	040	046	063	080	092	270	360
Max. Fördermenge (cm³/U)	16	20	23	28	32	40	46	63	80	92	270	360
Max. Nenndruck (bar)	350	350	350	350	350	350	350	350	350	350	350	350
Max. Drehzahl (min-1)	3000	3000	3000	3000	2800	2800	2800	2800	2500	2300	1800	1750

Quelle: Parker


KOHYD

Axialkolbenpumpen mit verstellbarer Fördermenge für Mitteldruck Anwendungen

Typ PD	018	028	045	060	075	0100	140
Max. Fördermenge (cm³/U)	18	28	45	60	75	100	140
Max. Nenndruck (bar)	280	280	280	280	280	280	280
Max. Drehzahl (min-1)	1800	1800	1800	1800	1800	1800	1800

Motorpumpeneinheiten für energieeffizente Anwendungen

Axialkolbenpumpe für geschlossenen Kreislauf

Axialkolbenpumpen mit fixer Fördermenge

- Sehr hohe Drehzahlen möglich
- Drücke bis 420 bar
- Hoher Wirkungsgrad
- Erlaubt hohe äußere Wellenbelastungen
- Widerstandsfähig gegen Schwingungen und Temperaturschocks
- ISO- und SAE Ausführungen lieferbar

Quelle: Parker

Typ F11	5	10	12	14	19	150	250
Verdrängungsvolumen (cm³/U)	4,9	9,8	12,5	14,3	19,0	150,0	242,0
Max. Nenndruck (bar)	350	350	350	350	350	350	350
Max. Drehzahl (min-1)	4600	4200	3900	3900	3500	1700	1500

Axialkolbenpumpen mit fixer Fördermenge

- Sehr hohe Drehzahlen möglich
- Drücke bis 480 bar
- Hoher Wirkungsgrad
- Erlaubt hohe äußere Wellenbelastungen
- Widerstandsfähig gegen Schwingungen und Temperaturschocks
- ISO- und SAE Ausführungen lieferbar

Quelle: Parker

Typ F12	30	40	60	80	90	110	125
Verdrängungsvolumen (cm³/U)	30,0	40,0	59,8	80,4	93,0	110,1	125,0
Max. Nenndruck (bar)	420	420	420	420	350	420	420
Max. Drehzahl (min-1)	3150	2870	2500	2300	2250	2290	2200

Flügelzellenpumpen mit fixer Fördermenge

- Geringe Geräuschpegel
- SAE- oder ISO Anschlüsse
- Große Auswahl an Verdrängungsvolumen und Kombinationen für 2-fach und 3-fach Pumpen
- Ein Sauganschluss bei Mehrfachpumpen
- Ventile direkt an die Anschlüsse anflanschbar

Quelle: Parker

Typ T7AS	B06	B10	B11	B13	B17	B20	B22	B25	B26	B28	B30	B32	B34	B36	B40
Fördermenge (cm³/U)	5,8	9,8	11,0	12,8	17,2	19,8	22,5	24,9	26,0	28,0	30,0	31,8	34,0	36,0	40,0
Max. Nenndruck (bar)	275	275	275	275	275	275	275	275	275	275	275	275	240	240	240
Max. Drehzahl (min-1)	3600	3600	3600	3600	3600	3600	3600	3000	3600	3600	3600	3600	3000	3000	3000

Typ T6CR	003	005	006	800	010	012	014	017	020	022	025	028	031
Fördermenge (cm³/U)	10,8	17,2	21,3	26,4	34,1	37,1	46,0	58,3	63,8	70,3	79,3	88,8	100,0
Max. Nenndruck (bar)	240	240	240	240	240	240	240	240	240	240	240	160	160
Max. Drehzahl (min-1)	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2500	2500	2500

Typ T6DR	014	017	020	024	028	031	035	038	042	045	050
Fördermenge (cm³/U)	47,6	58,2	66,0	79,5	89,7	98,3	111,0	120,3	136,0	145,7	158,0
Max. Nenndruck (bar)	210	210	210	210	210	210	210	210	210	210	160
Max. Drehzahl (min-1)	2500	2500	2500	2500	2500	2500	2500	2500	2200	2200	2200

Flügelzellenpumpen mit fixer Fördermenge

Typ T6ER			042		045	0	50	05	2	062	0	66	072
Fördermenge (cm³/U)			132,3	14	42,4	15	8,5	164	,8	196,7	213	3,3	227,1
Max. Nenndruck (bar)			210		210	2	10	21	0	210	2	10	210
Max. Drehzahl (min-1)			2200	2	200	22	00	220	00	2200	22	00	2200
Typ T7B	B02	B03	B04	B05	B06	B07	BO	8 B0	9 B10	D B11	B12	B14	B15
Fördermenge (cm³/U)	5,8	9,8	12,8	15,9	19,8	22,5	24,	9 28,0	0 31,8	35,0	41,0	45,0	50,0
Max. Nenndruck (bar)	240	240	240	240	240	240	240	0 24	0 240	240	240	240	240
Max. Drehzahl (min-1)	3600	3600	3600	3600	3600	3600	360	0 360	0 3600	3000	3000	3000	3000
	1												
Typ T7D	B14	B17	B20	B22	2 B2	24 E	328	B31	B35	B38	B42	045	050
Fördermenge (cm³/U)	44,0	55,0	66,0	70,3	81	,1 9	0,0	99,2	113,4	120,6	137,5	145,7	158,0
Max. Nenndruck (bar)	250	250	250	250	25	50 2	250	250	250	250	230	210	160
Max. Drehzahl (min-1)	3000	3000	3000	3000	300	00 30	000	3000	2800	2800	2500	2200	2200
Typ T7E	0	42	045	050	05	2	054	057	0	62	066	072	085
Fördermenge (cm³/U)	132	2,3 1	42,4	158,5	164	,8 1	71,0	183,3	196	5,7 21	3,3	227,1	268,7
Max. Nenndruck (bar)	2	10	210	210	21	0	210	210	2	10	210	210	75
max. Drehzahl (min-1)	22	00 2	2200	2200	220	0 2	200	2200	220	00 2	200	2200	2000

Zahnradmotore

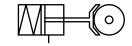
KOHYD

- Hoher Wirkungsgrad
- Dauerdruck bis max. 280 bar
- International gängige Abmessungen
- Reversierbare Ausführungen lieferbar

Quelle: Parker

Typ PGM505	8000	0012	0016	0021	0025	0033	0036	0043	0048	0058	0062	0079
Fördermenge (cm³/U)	0,8	1,2	1,6	2,1	2,5	3,3	3,6	4,3	4,8	5,8	6,2	7,9
Max. Nenndruck (bar)	280	280	280	280	280	280	260	250	230	200	180	160
Max. Drehzahl (min-1)	5000	5000	5000	4500	4500	4000	4000	4000	3800	3800	3500	3000

Typ PGM511	0060	0800	0100	0110	0140	0160	0190	0230	0270	0310	0330
Fördermenge (cm³/U)	6,0	8,0	10,0	11,0	14,0	16,0	19,0	23,0	27,0	31,0	33,0
Max. Nenndruck (bar)	250	250	250	250	250	250	250	225	190	165	155
Max. Drehzahl (min-1)	3500	3500	3500	3500	3400	3000	3250	2750	2350	2100	2000


Typ PGM517	0140	0160	0190	0230	0250	0280	0330	0380	0440	0520	0700
Fördermenge (cm³/U)	14,0	16,0	19,0	23,0	25,0	28,0	33,0	38,0	44,0	52,0	70,0
Max. Nenndruck (bar)	250	250	250	250	250	250	250	250	225	190	165
Max. Drehzahl (min-1)	3000	3400	3300	3300	3100	3100	3000	3000	2800	2700	2300

Torqmotore mit fixer Fördermenge

- Geringe interne Leckage, hoher volumetrischer Wirkungsgrad
- Lange Lebensdauer, reduzierte Reibung
- Patentierte Hochdruckwellendichtung, keine Leckölleitung
- Vielzahl von Varianten
- Anflanschbare Ventilblöcke

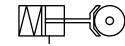
Quelle: Parker

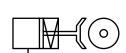
Typ TE / TJ	0036	0045	0050	0065	0800	0100	0130	0165	0195	0230	0260	0295	0330	0365	0390
Schluckvolumen (cm³/U)	36	41	50	66	82	98	130	163	196	228	261	293	326	370	392
Max. Nenndruck (bar)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Max. Drehzahl (min-1)	930	810	725	705	560	470	350	280	235	265	230	200	185	150	152

- Lange Lebensdauer, reduzierte Reibung
- Patentierte Hochdruckwellendichtung, keine Leckölleitung
- Vielzahl von Varianten
- Anflanschbare Ventilblöcke

Quelle: Parker

Typ TF	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Schluckvolumen (cm³/U)	81	100	128	141	169	197	238	280	364	405	477
Max. Nenndruck (bar)	300	300	300	300	300	300	300	300	300	300	300
Max. Drehzahl (min-1)	550	600	470	370	355	300	320	270	200	170	150





Torqmotore mit fixer Fördermenge

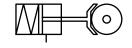
KOHYD

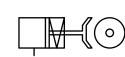
- Geringe interne Leckage, hoher volumetrischer Wirkungsgrad
- Lange Lebensdauer, reduzierte Reibung
- Patentierte Hochdruckwellendichtung, keine Leckölleitung
- Vielzahl von Varianten
- Anflanschbare Ventilblöcke

Quelle: Parker

Typ TL	0140	0170	0195	0240	0280	0310	0360
Schluckvolumen (cm³/U)	141	169	195	238	280	310	364
Max. Nenndruck (bar)	300	300	300	300	300	300	300
Max. Drehzahl (min-1)	613	512	484	399	335	310	255

Typ TG / TH	0140	0170	0195	0240	0280	0335	0405	0475	0530	0625	0785	0960
Schluckvolumen (cm³/U)	141	169	195	238	280	337	405	477	529	613	786	959
Max. Nenndruck (bar)	300	300	300	300	300	300	300	300	300	300	300	300
Max. Drehzahl (min-1)	530	440	380	320	270	225	185	160	140	120	95	78


Тур ТК	0250	0315	0400	0500	0630	0800	1000
Schluckvolumen (cm³/U)	250	315	400	500	630	800	1000
Max. Nenndruck (bar)	330	330	330	330	330	330	330
Max. Drehzahl (min-1)	523	413	373	300	240	276	220



Axialkolbenmotore

- Sehr hohe Drehzahl und schnelle Beschleunigung
- Drücke bis zu 420 bar
- Hohe Wellenbelastung zulässig
- Widerstandsfähig gegen Schwingungen und Temperaturschocks
- CETOP, ISO- und SAE-Ausführungen lieferbar

Quelle: Parker

Typ F11	05	10	12	14	19	150	250
Schluckvolumen (cm³/U)	4,9	9,8	12,5	14,3	19,0	150,0	242,0
Max. Nenndruck (bar)	350	350	350	350	350	350	350
Max. Drehzahl (min-1)	12800	10200	9400	9000	8100	3200	2700

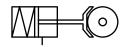
Axialkolbenmotore

- Sehr hohe Drehzahl und schnelle Beschleunigung
- Drücke bis zu 480 bar
- Hohe Wellenbelastung zulässig
- Widerstandsfähig gegen Schwingungen und Temperaturschocks
- ISO, SAE und Einbauausführungen lieferbar
- Hohes Startdrehmoment

Quelle: Parker

Typ F12	30	40	60	80	90	110	125
Schluckvolumen (cm³/U)	30,0	40,0	59,8	80,4	93,0	110,1	125
Max. Nenndruck (bar)	420	420	420	420	350	420	420
Max. Drehzahl (min-1)	6700	6100	5300	4800	4600	4400	4200

Axialkolbenmotore mit verstellbarem Schluckvolumen, V12,14,T12

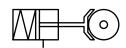


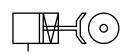
Radialkolbenmotore

- Hohes Anlaufmoment von 90 95 % des theoretischen Wertes
- Gute Steuerungsmöglichkeiten bei sehr niedriger Drehzahl
- Hoher volumetrischer Wirkungsgrad bis zu 98 %
- Geringer Geräuschpegel
- 2 Geschwindigkeitsausführungen möglich

	•	_	•
Quel	I ~ -	1).	-
Chiei	10.	Ρ>	ırĸ

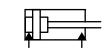
Größe MR		33	57	73	93	110	125	160	190	200	250	300	350
Schluckvolumen (cm³/U)		32	56	73	93	109	125	160	192	199	251	304	350
Max. Nenndruck (bar)		250	250	250	250	250	250	250	250	250	250	250	250
Max. Drehzahl (min-1)		1400	1300	1200	1150	1100	900	900	850	800	800	750	640
Größe MR		450	600	700	1100	1600	1800	2400	2800	3600	4500	6500	7000
Schluckvolumen (cm³/U)		452	608	707	1126	1598	1810	2393	2792	3637	4503	6460	6967
Max. Nenndruck (bar)		250	250	250	250	250	250	250	250	250	250	250	250
Max. Drehzahl (min-1)		600	520	500	330	260	250	220	215	180	170	130	130
Größe MRE		3	30	500	8	00	1400	21	00	3100	5	400	8200
Schluckvolumen (cm³/U)			32	498		04	1370		91	3104		401	8226
Max. Nenndruck (bar)			10	210		10	210		10	210		210	210
Max. Drehzahl (min-1)			50	600		50	280		50	215		160	120
													7000
Größe MRD			00	450		00	1100		00	2800	-	500	7000
Schluckvolumen (cm³/U)			04	452		07	1126		310	2792	-	503	6967
Max. Nenndruck (bar)			50	250		250	250		250	250		250	250
Max. Drehzahl (min-1)		/	50	600	5	00	330	2	250	215		170	130
Größe MRT	7100	9000	14000	1700	0 195	00 1	MRTE	850	00 108	300 1	6500	20000	23000
Schluckvolumen (cm³/U)	7104	9005	14010			808		851			6543	19788	23034
Max. Nenndruck (bar)	250	250			50 2	:50		21	0 2	210	210	210	210
Max. Drehzahl (min-1)	150	130	80	7	70	60		12	20 1	110	70	60	50
Größe MRTF				7800		990	ما	155	00	1	8000		21500
Schluckvolumen (cm³/U)				7808		990	T T	152			8025		21271
Max. Nenndruck (bar)				210		21			10	ı ı	210		212/1
Max. Drehzahl (min-1)				130		12			75		65		55
Max. Dienzain (iiiii-i)				130		ΙZ	U		15		05		J.J.





Metrische Zugstangenzylinder nach ISO 6020/2 und DIN24554

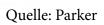
KOHYD


- 12 Standardbefestigungsarten
- Ein- und beidseitige Kolbenstange möglich
- Hübe in praktisch allen Längen möglich
- Dämpfung Stangen- und Bodenseitig wählbar
- Verschiedene Dichtungssysteme möglich
- Lieferbare Varianten: Hubverstellung, Kolbenstangenklemmeinheit, Faltenbalg, Näherungsschalter, Metallabstreifer, Wegmesssystem
- Max. Druck bis 210 bar (vom Typ abhängig)

Ouelle: Parker

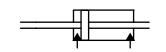
	 =
Т	

Typ HMI/HMD													
Kolbendurchmesser (mm)	25	25	32	32	40	40	50	50	50	63	63	63	80
Stangendurchmesser (mm)	12	18	14	22	18	28	22	28	36	28	36	45	36


Typ HMI/HMD			·											
Kolbendurchmesser (mm)	80	80	100	100	100	125	125	125	160	160	160	200	200	200
Stangendurchmesser (mm)	45	56	45	56	70	56	70	90	70	90	110	90	110	140

Zöllige Zugstangenzylinder

KOHYD


- 17 Standardbefestigungsarten
- Spezifikationen nach ANSI B93.15-1987 und NFPA
- Standardkonstruktion Zugankerbauweise mit quadratischen Böden und Köpfen
- Max. Druck 210 bar (vom Typ abhängig)

11	
-	_

Typ 2H - (Kolben in Zoll)	1 1/2"	1 1/2"	2"	2"	2 1/2"	2 1/2"	2 1/2"	3 1/4"	3 1/4"	3 1/4"	4"	4"	4"
Kolbendurchmesser (mm)	38,1	38,1	50,8	50,8	63,5	63,5	63,5	82,6	82,6	82,6	101,6	101,6	101,6
Stangendurchmesser (mm)	15,9	25,4	25,4	34,9	25,4	34,9	44,5	34,9	44,5	50,8	44,5	50,8	63,5

Typ 2H - (Kolben in Zoll)	5"	5"	5"	5"	6"	6"	6"	6"	7"	7"	7"	7"
Kolbendurchmesser (mm)	127,0	127,0	127,0	127,0	152,4	152,4	152,4	152,4	177,8	177,8	177,8	177,8
Stangendurchmesser (mm)	50,8	63,5	76,2	88,9	63,5	76,2	88,9	101,6	76,2	88,9	101,6	127,0

Typ 2H - (Kolben in Zoll)	8"	8"	8"	8"	10"	10"	12"	12"
Kolbendurchmesser (mm)	203,2	203,2	203,2	203,2	254,0	254,0	304,8	304,8
Stangendurchmesser (mm)	88,9	101,6	127,0	139,7	127,0	177,8	139,7	215,9

Zöllige Zugstangenzylinder

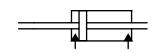
- 15 Standardbefestigungsarten
- Max. Druck 70 bar (vom Typ abhängig)
- jede beliebige Hublänge lieferbar
- Herausschraubbare Kolbenstangenführung zur leichteren Wartung
- Profilierte Dämpfung für bessere Leistung und Produktivität

Quelle: Parker

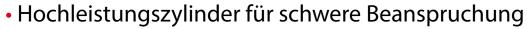
Typ 3L - (Kolben in Zoll)	1"	1"	1 1/2"	1 1/2"	2"	2"	2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	3 1/4"	3 1/4"
Kolbendurchmesser (mm)	25,4	25,4	38,1	38,1	50,8	50,8	50,8	63,5	63,5	63,5	63,5	82,6	82,6
Stangendurchmesser (mm)	12,7	15,9	15,9	25,4	15,9	25,4	34,9	15,9	25,4	34,9	44,5	25,4	34,9

Typ 3L - (Kolben in Zoll)	3 1/4"	3 1/4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	6"	6"
Kolbendurch- messer (mm)	82,6	82,6	101,6	101,6	101,6	127	127	127	127	127	127	127	152,4	152,4
Stangendurch- messer (mm)	44,5	50,8	44,5	50,8	63,5	25,4	34,9	44,5	50,8	63,5	76,2	88,9	34,9	44,5

Typ 3L - (K. in Zoll)	6"	6"	6"	6"	6"	8"	8"	8"	8"	8"	8"	8"	8"	8"
Kolbend. (mm)	152,4	152,4	152,4	152,4	152,4	203,2	203,2	203,2	203,2	203,2	203,2	203,2	203,2	203,2
Stangend. (mm)	50,8	63,5	76,2	88,9	101,6	34,9	44,5	50,8	63,5	76,2	88,9	101,6	127,0	139,7



Metrische Rundzylinder


- Hochleistungszylinder für schwere Beanspruchung
- Max. Druck bis 160 bar
- Spezifikation nach ISO 6020/1, CETOP RP58H
- Konstruktion: Zylinderkopf und Boden in Flanschbauweise

(Quel	le:	Par.	ke:

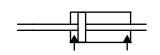
Typ MMB										
Kolbendurchmesser (mm)	40	40	50	50	63	63	80	80	100	100
Stangendurchmesser (mm)	22	28	28	36	36	45	45	56	56	70

Typ MMB										
Kolbendurchmesser (mm)	125	125	160	160	200	200	250	250	320	320
Stangendurchmesser (mm)	70	90	90	110	110	140	140	180	180	220

- Max. Druck bis 250 bar
- Spezifikation nach CETOP RP73H, ISO 6022, DIN24 333, BS 6331 Teil III, AFNOR NF E48-025, VW39D 921
- Konstruktion: Zylinderkopf und –boden in Flanschbauweise

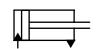
Typ MMA												
Kolbendurchmesser (mm)	50	50	63	63	80	80	100	100	125	125	140	140
Stangendurchmesser (mm)	32	36	40	45	50	56	63	70	80	90	90	100

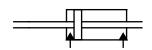
Typ MMA										
Kolbendurchmesser (mm)	160	160	180	180	200	200	250	250	320	320
Stangendurchmesser (mm)	100	110	110	125	125	140	160	180	200	220

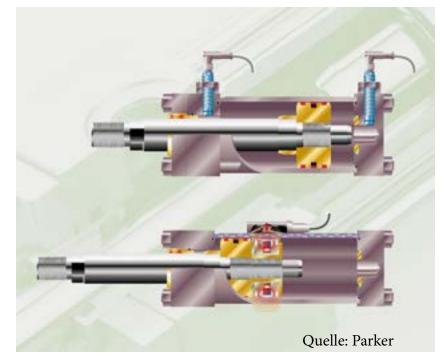


Metrische Zugstangenzylinder mit Wegmesssystem

KOHYD


- Max. Druck bis 210 bar
- Direkt am Zylinder montierte Ventile ermöglichen besseren Ölaustausch, bessere Positioniergenauigkeit und weniger Montageaufwand
- Messsystem ist geschützt im Zylinder
- Messlänge 25 3000 mm
- · Ausgang: analog oder digital



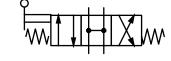


Typ HMIX											
Kolbendurchmesser (mm)	40	50	50	63	63	63	80	80	80	100	100
Stangendurchmesser (mm)	28	28	36	28	36	45	36	45	56	45	56

Typ HMIX										
Kolbendurchmesser (mm)	100	125	125	125	160	160	160	200	200	200
Stangendurchmesser (mm)	70	56	70	90	70	90	110	90	110	140

Positionskontrollarten von Zylindern

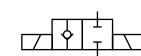
Wegeventile


- Hebel-, nocken-, pneumatisch oder hydraulisch betätigte Ventile
- Weichschaltende und Stellungsüber wachte Ventile lieferbar
- 8-Watt Ausführung lieferbar

Quelle: Parker

A A A 🗆		+		
1	١ ١		- √*	W
	₩	ТТ	-1 🗛	
		\Box		


KOHYD



Nenngröße Cetop/NG 03/6 05 / 10 05 / 10 07 / 16 08 /25 10/32 Magnet-Schieberventil D1VW D3W **D31W D41W D81W** D111W Max. Volumenstrom* (I/min) 80 150 150 300 700 2000 Max. Betriebsdruck (bar) 350 350 350 350 350 350 D1VP D3DP D11P Hydraulisch angesteuert D4P D₉P Hand-Schieberventil D1VL D3DL D9L D4L

Zwischenplattenventile

- Rückschlagventile entsperrbare Rückschlagventile Drosselventile
- Stromregelventile Druckbegrenzungsventile Druckreduzierventile
- Druckzuschaltventile Lasthalteventile Senkbremsventile
- Druckfolgeventile

Quelle: Parker

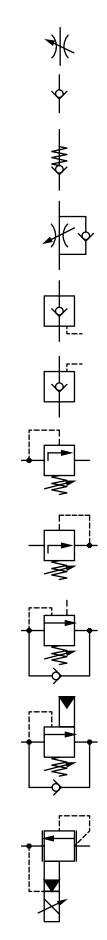
Nenngröße Cetop/NG	03 / 6	05 / 10	07 / 16	08 /25	10/32
Rückschlagventil	CM2	CM3			
Entsperrbare Rückschlagventile	CPOM2	CPOM3	CPOM4	CPOM6	
Drosselrückschlagventile	FM2	FM3	FM4	FM6	
Druckreduzierventil		PR10		PR25	PR32
Druckreduzierventil vorgesteuert	PRDM2	PRDM3			
Druckreduzierventil direkt		PRM3	PRM4	PRM6	
Druckbegrenzungsventil		R10		R25	R32
mit elektrischer Entlastung					
Druckbegrenzungsventil		RE10		RE25	RE32
Druckbegrenzungsventil	RDM2	RDM3			
Druckbegrenzungsventil		RM3	RM4	RM6	
Druckbegrenzungsventil	VS				

Verrohrungsventile

- Rückschlagventile entsperrbare Rückschlagventile Drosselventile
- Stromregelventile Druckbegrenzungsventile Druckreduzierventile
- Druckzuschaltventile Lasthalteventile Senkbremsventile
- Druckfolgeventile

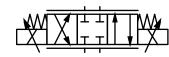
Quelle: Parker

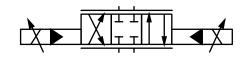
Anschlussgröße (Zoll)	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Drosselrückschlagventil	9F200	9F400	9F600	9F800	9F1200	9F1600	9F2000	9F2400	9F3200
Nadelventil	9N200	9N400	9N600	9N800	9N1200	9N1600			
Rückschlagventil	9C200	9C400	9C600	9C800	9C1200	9C1600			
entperrbares Rückschlagventil			9CP600		9CP1200				


Einschraubventile

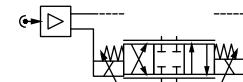
- Rückschlagventile
- Wechselventile
- Lasthalteventile
- Drossel- und Stromregelventile
- Druckbegrenzungsventile
- Logigventile
- Wegeventile
- Ventile manuell betätigt
- Magnetventile
- Proportionalventile
- Ersatzspulen und Elektronik
- Gehäuse und Cavaties
- technische Daten

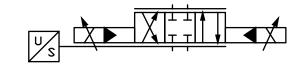
Quelle: Parker




Proportionalventile

KOHYD

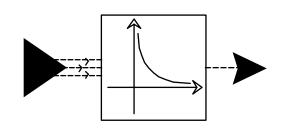

- Kolben/Buchsen Design für maximale Präzision
- Kolben/Gehäuse Design für maximalen Durchfluß
- Hohe Reproduzierbarkeit
- geringe Hysterese
- mit aufgebauter Elektronik oder mit separaten Elektronikmodulen





Namaräßa Catan (NC	02/6	OF / 10	OF / 10	07 / 16	08 /25	10 / 32	mit Wege-	mit integrierter
Nenngröße Cetop/NG	03 / 6	05 / 10	05 / 10	07 / 16	06/25	10 / 32	meßsystem	Elektronik
Standarddynamik	D1FB	D3FB	D31FB	D41FB	D91FB	D111FB		
Standarddynamik	D1FB OBE	D3FB OBE	D31FB OBE	D41FB OBE	D91FB OBE	D111FB OBE		X
Hohe Reproduzierbarkeit			D31FC	D41FC	D91FC	D111FC	X	X
Regelventil Servodynamik	D1FP	D3FP	D31FP	D41FP	D81FP	D111FP	X	X
Prop. Druckreduzierventil	PRPM2							
Prop. Druckreduzierventil			PE10		PE25	PE32		
Prop. Druckbegrenzungsventil	RE06M*T							X
Prop. Druckbegrenzungsventil	RE06M*W							
Prop. Druckbegrenzungsventil			RE10T		RE25T	RE32T		X
Prop. Druckbegrenzungsventil			RE10W		RE25W	RE32W		
Prop. Druckbegrenzungsventil	VBY*06	VBY*10						
Prop. Druckreduzierventil	VMY*06	VMY*10						

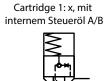
Digitale und Analoge Leistungsverstärker und Achsenregler


- Einfache speicherbare Parametereingabe von optimierten Werten wie Rampen, Sollwertsignale, Totbereich-Kompensation, Hilfsfunktionen bieten gute Reproduzierbarkeit
- Parametrierung über RS232 Schnittstelle
- Für Steuer- und Regelfunktionen
- Regeln von mehreren Achsen
- PC Bedienprogramm zum kostenlosen Download unter: www.parker.com/euro_hcd unter, Software Downloads
- Darstellung und Dokumentation von Parametersätzen

Quelle: Parker

Elektronikmodul	Ste	etig-Wed	geven	tile		Pruckve	entile			<u>Strom</u>	ventile	e
für	D*FB	D*FW	4DP	D*FP	RE*W	DSAE	VBY	VMY	TDA	TEA	DUR	PRPM
PWD400 Verstärker	X	X	X									
PWDXXA-40 mit Sensoreingang	X	X	Χ					X				
für Wegaufnehmer oder Drucksensor												
PCD Verstärker					Χ	X	X	X	X	X	X	X
PZD Sollwerte	X	X	X	X	X	X	X	X	X	X	X	X
PID Achsenregler	X	X	Χ	X	Χ	X	X	X	X	X	X	X
Compax Achsenregler				X								

Cartridgeventile


- Volumenstrom bis 8000 l/min (bei $\Delta p = 5$ bar)
- Betriebsdruck bis 350 bar
- Proportionale und mechanische Verstellung
- Modulares System f
 ür Wege-, Druck- Stromund Sperrfunktionen

Größe NG	16	25	32	40	50	63	80	100
2/2 Wege Sitzventil	C10	C10	C10	C10	C10	C10		
Max. Volumenstrom (I/min)	220	450	900	1300	1800	3600		
2/2 Wege Activ Sitzventil		C18DC	C18DC	C18DC	C18DC	C18DC		
		450	900	1300	1800	3600		
2/2 Wege Activ Sitzventil		C18DB	C18DB	C18DB	C18DB	C18DB		
		450	900	1300	1800	3600		
Rückschlagventil	C1DB	C1DB	C1DB	C1DB	C1DB	C1DB	C1DB	C1DB
	250	450	900	1300	1800	3600	5250	8000
2 Wegefunktion	CE	CE	CE	CE	CE	CE	CE	CE
	250	450	900	1350	1800	3600	5250	8000
Druckfunktion	CP	CP	CP	CP	CP	CP		
	250	450	900	1350	1800	3600		
Druckbegrenzungsventil	R16E	R25E	R32E	R40E	R50E	R63E		
Druckbegrenzungsventil mit elektrischer Entlastung	RS16E	RS25E	RS32E	RS40E	RS50E	RS63E		
Proportional Druckbegrenzung	RE16E	RE25E	RE32E	RE40E	RE50E	RE63E		
Proportional Drosselventil	TDA016	TDA025	TDA032	TDA040	TDA050	TDA063	TDA080	TDA100
Proportional Drosselventil			TDP032	TDP040	TDP050	TDP063	TDP080	TDP100
Servo-Dynamik				TDL40	TDL50	TDL63	TDL80	TDL100
Proportional Drosselventil mit			TEAGSS	TE 4 0 4 0	TEAOEO	TEAGGO	TE 4 000	TF A 100
Sperrfunktion			TEA032	TEA040	TEA050	TEA063	TEA080	TEA100
Drosselventil mit Sperrfunktion			TEH032	TEH040	TEH050	TEH063	TEH080	TEH100
Proportional Drosselventil			TPQ032	TPQ040	TPQ050	TPQ063	TPQ080	

Cartridge 1: x, mit interem Steueröl B

Cartridge 1: x

Diagnose Messtechnik

- Handmessgeräte und Komplett-Messsysteme
- Ein umfangreiches Angebot an Leitungseinbaugeräten wie: Durchflussmesser, Strömungsschalter, Drucksensoren, etc.

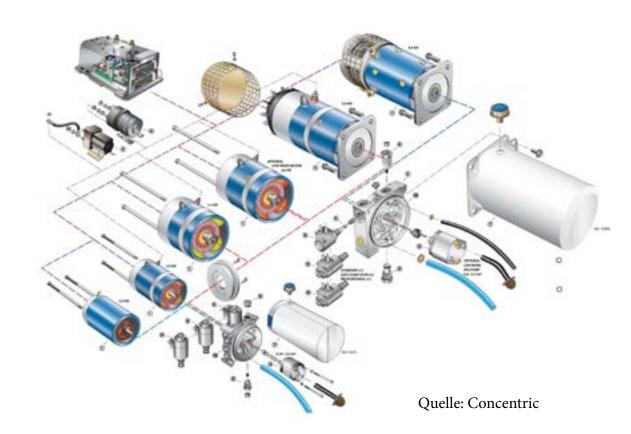
Quelle: Parker

	Serie
Digital Manometer mit Speicher	Service Junior
einfaches Messsystem	Serviceman
Multifunktionsmessgerät	Service Master
Druck-/Temperatursensor	SCP
Durchflußmessturbine	SCFT
Hydraulik-Tester	SCLV
Durchflussmesser	SCQ
Druck Controller	SCPSD
Niveau Controller	SCLSD
Öl-Tank-Controller	SCOTC
Anzeige	SCE
serv-Clip Messanschlüsse	SC
Neu: Multifunktionsmessgerät	Service Master Connect

Manometer

Strömungs-

Durchfluss-


Füllstands-

Kompaktaggregate

- Spannungsbereich: 12 48 V
- Pumpen: 0,8 bis 5,7 ccm³/U
- Maximaler Druck: 250 bar
- Tank: 3,2 bis 18 l in Stahl
- Kompakte Bauform
- Industriehydraulikaggregate
- Hesselman Classic Aggregate

Quelle: Concentric

Hesselman Teile	Spannung: 12VDC	Spannung: 24 VDC
Gleichstrommotor 1,2 kW	12MG32THE	24MG32THE
Gleichstrommotor 2 kW	12MB22TXWA	24MB22TXWA
Gleichstrommotor 3 kW	12MC62TWA	24MA42TWA
Gleichstrommotor 3 kW mit Lüfter		24MA42THSWA
Magnetventile	12EM15VE125	24EM15VE125
Magnet	12EM15S	24EM15S
Relais	SW-80/50131-00	SW-80/50132-00
Pumps P1MD6, P1PD, P1HD		
Motorpumpeneinheiten MA	DC12MA42THSP	DC24MA42THSP
Motorpumpeneinheit 1,64 ccm ³ /U	DC12MA42P9	DC24MA42P9
Motorpumpeneinheit 2,46 ccm ³ /U	DC12MA42P13	DC24MA42P13
Motorpumpeneinheit 3,28 ccm ³ /U	DC12MA42P17	DC24MA42P17
Motorpumpeneinheit 4,3 ccm ³ /U	DC12MA42P22	DC24MA42P22

Quelle: Concentric

Filteraggregate

- Kostenminimierung durch Ausfallsicherheit von Hydraulik- und Schmierstoffaggregaten
- Auf Luftreifen, Treppensteigerrädern, oder mit 4 Reifen, vom Stapler ziehbar, mit automatischer Feststellbremse
- Für Filtration von Öl, Emulsionen, Wasser, Diesel, etc.
- Schraubenspindelpumpenausführung für dünnoder zähflüssiges Medium geeignet
- Ansaughöhe bis zu 6 m
- Filter- Kühlaggregat möglich

HYPRO Filterelemente

- Aufrüstung auf DFE Filterelemente (Dynamic Filter Efficency Test dieser Test geht über die Standardtestverfahren hinaus, bzw. beinhaltet dynamische Systemschwankungen)
- Verbesserung auf funkensichere Elemente verhindern Flüssigkeitszerfall und verlängert die Nutzungsdauer der Additive
- Koaleszenzelemente für Wasserabscheidung
- SVR entfernt lösbare Verharzungen
- Hy-Dry-Tankenfeuchter für Entlüftung
- ICB Säurefängerelemente zur Trockenbindung von Ionenladungen für EHC-Systeme mit Phophatester
- ECR Reinigungssystem für elektrostatische Kontamination, entfernt durch thermischen Zerfall entstandene Submikronpartikel

- Ölaufbereitungsanlagen (fahrbar) scheiden freies Wasser und freie Gase bis zu 100 % und gelöste Gase bis zu 80 % aus Mineralölen ab
- Um die Stabilität der Flüssigkeiten zu erhalten, muss der Gehalt flüssiger Verunreinigung unterhalb bestimmter Grenzen gehalten werden
- Pall bietet hierfür Separationsanlagen von L/L-Coalescer bis zu Ultrafiltrationsanlagen an

Speicher

- Blasenspeicher
- Membranspeicher
- Kolbenspeicher, Geräuschdämpfer, etc.

Quelle: HY-PRO

Quelle: PALL

Wärmetauscher

KOHYD

Wasser-Ölkühler

PWO Plattenwärmetauscher gelötet
 GWO geschraubte Ausführung

Quelle: Parker

Quelle: Parker

SWO Rohrbündelkühler

Quelle: Parker

• QPM Niederdruckpumpen f. Kühler

Quelle: Parker

Luft-Ölkühler

- maximale Kühlleistung bis 300 kW
- lieferbar mit Thermoelement
- optional mit verschiedenen Bypassventilen
- auch in Kombination mit Filter lieferbar

• LAC mit Wechselstrommotor

LDC mit Gleichstrommotor

• LHC mit Hydraulikmotor

• LOC mit integrierter Pumpe

Verbindungselemente

KOHYD

- Höchste Korrosionsbeständigkeit
 Der neue Cr(VI)-freie Oberflächenschutz bewirkt eine Korrosionsbeständig keit von durchschnittlich mehr als 500 Stunden gegenüber Weißrost
- Höhere Nenndrücke EO-Plus Verschraubungen sind bis zu 800 bar (PN) in der Baureihe S und bis zu 500 bar (PN) in der Baureihe L einsetzbar
- Baureihen:
 EO-Plus, EO2-Plus, EO2-Form
- Parker O-Lok, Triple-Lok-Armaturen

Quelle: Parker

Schläuche

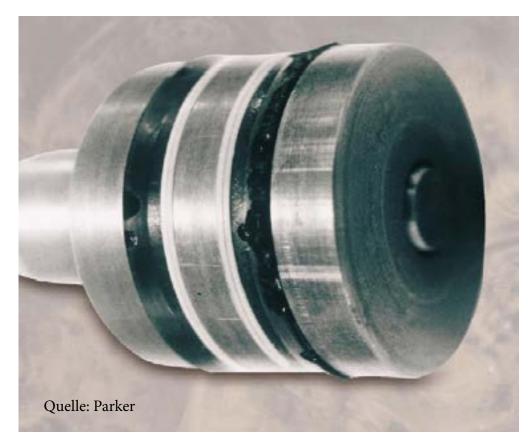
- Parker Elite-Compact-Schläuche
 Wo immer kleine Biegeradien mit hohen Betriebsdrücken und
 hervorragende Medienverträglichkeit gefragt sind, bieten sich
 die Elite-Compact-Schläuche von Parker an.
- Aufbau: Abrieb- und ozonbeständige Außenschicht aus synthetischem Gummi

Quelle: Parker

Reparaturen

- Markenunabhängige Instandhaltung
- Reparaturen von Hydraulikkomponenten und Anlagen
- Reparaturen von Hydraulikzylindern, Ventilen, Pumpen und Aggregaten

Montagen und Inbetriebnahmen


- Überprüfen und Dokumentieren mit Protokoll
- Ölanalysen auch vor Ort möglich
- Abreinigen, Entwässern
- Leitungen mit Projektilen reinigen

Anlagenoptimierung und Fehlersuche

- Umfangreiches Lager an Austauschelementen
- Beschaffung von Originaloder Alternativkomponenten
- Verbessern von Dichtungssystemen
- Optimieren des Energiehaushaltes der Anlage

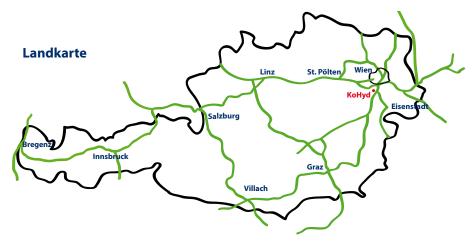
Instandsetzung

• Fabrikatunabhängig setzten wir Hydraulikanlagen bis 1000 bar instand und fertigen dafür Sonderbauteile

Aggregatebau

- Standard- und Sonderaggregate
- Leistungsoptimierte Aggregate mit regulierbaren Fördermengen, hydraulisch gesteuert oder auch mit Frequenzumformer
- DIN Normbehälter
- Motorpumpeneinheiten werden waagrecht oder senkrecht montiert
- Schaltplanerstellung und Simulation

Firmenfotos



Messen

Premium Marken

Concentric Kompaktaggregate, Pumpen

Denison Pumpen und Motore, Ventile, Hydromotore

Enerpac Werkzeughydraulik

Hesselman Kompaktaggregate, Ladebordwandaggregate

Hi-Force Werkzeughydraulik, Handpumpen, Zylinder,

Holmatro Mehrzweckzylinder, Handpumpen, Aufgleissystem

Hydraulik-Ring Hydraulikkomponenten, Flügelzellenpumpen,

Druckübersetzer, Ventile

Marzocchi Zahnradpumpen, Zahnradmotore

Pall Filtertechnik

Parker Hannifin Pumpen, Elektronik- und Achsenregler,

Proportionalventile, Hydromotore, Zylinder

Ross Orbit Hydromotore

Sterling Einschraubventile, Ventilblöcke

Towler Cartrideventile, Magnetventile

TRW-Ehrenreich Torqmotore

UCC Filter

Ultra Zahnradpumpen und Zahnradmotore

Voac Pumpen, Motore

Wandfluh Ventile, Ersatzmagnete

Waterman Einschraubventile

© KoHyd Kopeczky Hydraulik GmbH, A-2340 Mödling, Grenzgasse 40 Tel.: 0043-2236-21512, mail: office@kohyd.at, VAT: ATU39994501

Wichtig: Änderungen ohne vorherige Ankündigung vorbehalten. KoHyd übernimmt keine Haftung für Fehler

Katalog: 2022DE